132

Chapter 4. The Curvature of Higher Dimensional Manifolds

A. An Inaugural Lecture

On June 10, 1854 the faculty of Gottingen University heard a lecture

entitled Uber die Hypothesen, welche der Geometrie zu Grunde liegen (On the

Hypotheses which lie at the Foundations of Geometry). This lecture was
delivered by Georg Friedrich Bernhard Riemann, who had been born just a year
before Gauss' paper of 1827. Although the lecture was not published until
1866, the ideas contained within it proved to be the most influential in the
entire history of differential geometry. To be sure, mathematicians had not
neglected the study of surfaces in the meantime; in fact, Gauss' work had
inspired a tremendous amount of work along these lines. But the results
obtained in those years can all be proved with much greater ease after we have
followed the long series of developments initiated by the turning point in
differential geometry which Riemann's lecture provided.

A short account of the life and character of Riemann can be found in the
biography by Dedekind* which is included in Riemann's collected works
(published by Dover). His interest in many fields of mathematical physics,
together with a demand for perfection in all he did, delayed until 1851 the

submission of his doctoral dissertation Grundlagen fur eine allegemeine Theorie

der Functionen einer veranderlichen complexen Grosse (Foundations for a general

theory of functions of a complex variable). Gauss' official report to the
Philosophical Faculty of the University of Gottingen stated '"The dissertation

submitted by Herr Riemann offers convincing evidence of the author's thorough

*Even for those who can only plod through German, this is preferable to the
account in E. T. Bell's Men of Mathematics, which is hardly more than a trans-
lation of Dedekind, written in a racy style and interladen with supercilious
remarks of questionable taste.
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and pentrating investigations in those parts of the subject treated in the
dissertation, of a creative, active truly mathematical mind, and of a glori-
ously fertile originality."

Riemann was now qualified to seek the position of Privatdocent (a lecturer
who received no salary, but was merely forwarded fees paid by those students
who elected to attend his lectures). To attain this position he first had to
submit an "inaugural paper" (Habilitationsschrift). Again there were delays,
and it was not until the end of 1853 that Riemann submitted the Habilitations-

schrift, Uber die Darstellbarkeit einer Function durch eine trigonometrische

Reihe (On the representability of a function by a trigonometric series). Now
Riemann still had to give a probationary inaugural lecture on a topic chosen
by the faculty, from a list of three proposed by the candidate. The first two
topics which Riemann submitted were ones on which he had already worked, and
he had every reason to expect that one of these two would be picked; for the
third topic he chose the foundations of geometry. Contrary to all traditioms,
Gauss passed over the first two, and picked instead the third, in which he had been
interested for years. At this time Riemann was also investigating the connec-
tion between electricity, magnetism, light, and gravitation, in addition to
acting as an assistant in a seminar on mathematical physics. The strain of
carrying out another major investigation, aggravated perhaps by the hardships
of poverty, brought on a temporary breakdown. However, Riemann soon recovered,
disposed of some other work which had to be completed, and then finished his
inaugural lecture in about seven more weeks.

Riemann hoped to make his lecture intelligible even to those members of
the faculty who knew little mathematics. Consequently, hardly any formulas

appear and the analytic investigations are completely suppressed. Although
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Dedekind describes the lecture as a masterpiece of exposition, it is ques-
tionable how many of the faculty comprehended it. In making the following
translation,* I was aided by the fact that I already had some idea what the
mathematical results were supposed to be. The uninitiated reader will probably
experience a great deal of difficulty merely understanding what Riemann is
trying to say (the proofs of Riemann's assertions are spread out over the next
several Chapters). We can be sure, however, that one member of the faculty
appreciated Riemann's work. Dedekind tells us that Gauss sat at the lecture
"which surpassed all his expectations, in the greatest astonishment, and on the
way back from the faculty meeting he spoke to Wilhelm Weber, with the greatest
appreciation, and with an excitement rare for him, about the depth of the

ideas presented by Riemann."

*

The original is contained, of course, in Riemann's collected works. Two
English translations are readily available, one in Volume 2 of Smith's
Source Book in Mathematics (Dover), and one in Clifford's Mathematical Papers
(Chelsea).
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RIEMANN

ON THE HYPOTHESES WHICH LIE AT THE FOUNDATIONS OF GEOMETRY

Plan of the Investigation

As is well known, geometry presupposes the concept of space, as well as
assuming the basic principles for constructions in space. It gives only
nominal definitions of these things, while their essential specifications
appear in the form of axioms. The relationship between these presuppositions
[the concept of space, and the basic properties of space] is left in the dark;
we do not see whether, or to what extent, any connection between them is neces-
sary, or a priori whether any connection between them is even possible.

From Euclid to the most famous of the modern reformers of geometry,
Legendre, this darkness has been dispelled neither by the mathematicians nor
by the philosophers who have concerned themselves with it. This is undoubtedly
because the general concept of multiply extended quantities, which includes
spatial quantities, remains completely unexplored. I have therefore first set
myself the task of constructing the concept of a multiply extended quantity
from general notions of quantity. It will be shown that a multiply extended
quantity is susceptible of various metric relations, so that Space constitutes
only a special case of a triply extended quantity. From this however it is a
necessary consequence that the theorems of geometry cannot be deduced from
general notions of quantity, but that those properties which distinguish Space
from other conceivable triply extended quantities can only be deduced from
experience. Thus arises the problem of seeking out the simplest data from

which the metric relations of Space can be determined, a problem which by its
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very nature is not completely determined, for there may be several systems of
simple data which suffice to determine the metric relations of Space; for the
present purposes, the most important system is that laid down as a foundation
of geometry by Euclid. These data are — like all data — not logically neces-
sary, but only of empirical certainty, they are hypotheses; one can therefore
investigate their likelihood, which is certainly very great within the bounds
of observation, and afterwards decide upon the legitimacy of extending them
beyond the bounds of observation, both in the direction of the immeasurably

large, and in the direction of the immeasurably small.

I. Concept of an n-fold extended quantity

In proceeding to attempt the solution of the first of these problems, the
development of the concept of multiply extended quantity, I feel particularly
entitled to request an indulgent criticism, as I am little practiced in these
tasks of a philosophical nature where the difficulties lie more in the concepts
than in the construction, and because I could not make use of any previous
studies, except for some very brief hints on the subject which Privy Councillor
Gauss has given in his second memoir on Biquadratic Residues, in the Gottingen
Gelehrte Anzeige and in the Gottingen Jubilee-book, and some philosophical

researches of Herbart.

1.
Notions of quantity are possible only when there already exists a general
concept which admits particular instances. These instances form either a con-
tinuous or a discrete manifold, depending on whether or not a continuous tran-

sition of instances can be found between any two of them; individual instances
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are called points in the first case and elements of the manifold in the second.
Concepts whose particular instances form a discrete manifold are so numerous
that some concept can always be found, at least in the more highly developed
languages, under which any given collection of things can be comprehended (and
consequently, in the study of discrete quantities, mathematicians could
unhesitatingly proceed from the principle that given objects are to be regarded
as all of one kind). On the other hand, opportunities for creating concepts
whose instances form a continuous manifold occur so seldom in everyday life
that color and the position of sensible objects are perhaps the only simple
concepts whose instances form a multiply extended manifold. More frequent
opportunities for creating and developing these concepts first occur in higher
mathematics.

Particular portions of a manifold, distinguished by a mark or by a boun-
dary, are called quanta. Their quantitative comparison is effected in the
case of discrete quantities by counting, in the case of continuous quantities
by measurement. Measuring involves the superposition of the quantities to be
compared; it therefore requires a means of transporting one quantity to be used
as a standard for the others. Otherwise, one can compare two quantities only
when one is a part of the other, and then only as to "more" or "less'", not as
to "how much". The investigations which can be carried out in this case form
a general division of the science of quantity, independent of measurement,
where quantities are regarded, not as existing independent of position and not
as expressible in terms of a unit, but as regions in a manifold. Such inves-
tigations have become a necessity for several parts of mathematics, e.g., for

the treatment of many-valued analytic functions, and the dearth of such studies
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is one of the principal reasons why the celebrated theorem of Abel and the
contributions of Lagrange, Pfaff and Jacobi to the general theory of differen-
tial equations have remained unfruitful for so long. From this portion of the
science of extended quantity, a portion which proceeds without any further
assumptions, it suffices for the present purposes to emphasize two points,
which will make clear the essential characteristic of an n-fold extension. The
first of these concerns the generation of the concept of a multiply extended
manifold, the second involves reducing position fixing in a given manifold to

numerical determinations.

2.

In a concept whose instances form a continuous manifold, if one passes
from one instance to another in a well-determined way, the instances through
which one has passed form a simply extended manifold, whose essential charac-
teristic is, that from any point in it a continuous movement is possible in
only two directions, forwards and backwards. If one now imagines that this
manifold passes to another, completely different one, and once again in a well-
determined way, that is, so that every point passes to a well-determined point
of the other, then the instances form, similarly, a double extended manifold.
In a similar way, one obtains a triply extended manifold when one imagines
that a doubly extended one passes in a well-determined way to a completely
different one, and it is easy to see how one can continue this construction.
If one consdiers the process as one in which the objects vary, instead of
regarding the concept as fixed, then this construction can be characterized as
a synthesis of a variability of n+1 dimensions from a variability of n

dimensions and a variability of one dimension.
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3.

I will now show, conversely, how one can break up a variability, whose
boundary is given, into a variability of one dimension and a variability of
lower dimension. One considers a piece of a manifold of one dimension — with
a fixed origin, so that points of it may be compared with one another — vary-
ing so that for every point of the given manifold it has a definite value,
continuously changing with this point. In other words, we take within the
given manifold a continuous function of position, which, moreover, is not con-
stant on any part of the manifold. Every system of points where the function
has a constant value then forms a continuous manifold of fewer dimensions than
the given one. These manifolds pass continuously from one to another as the
function changes; one can therefore assume that they all emanate from one of
them, and generally speaking this will occur in such a way that every point of
the first passes to a definite point of any other; the exceptional cases,
whose investigation is important, need not be considered here. In this way,
the determination of position in the given manifold is reduced to a numerical
determination and to the determination of position in a manifold of fewer
dimensions. It is now easy to show that this manifold has n-1 dimensions,
if the given manifold is an n-fold extension. By an n-time repetition of this
process, the determination of position in an n-fold extended manifold is
reduced to n numerical determinations, and therefore the determination of
position in a given manifold is reduced, whenever this is possible, to a
finite number of numerical determinations. There are, however, also manifolds
in which the fixing of position requires not a finite number, but either an

infinite sequence or a continuous manifold of numerical measurements. Such
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manifolds form, e.g., the possibilities for a function in a given region, the

possible shapes of a solid figure, etc.

II. Metric relations of which a manifold of n dimensions is susceptible,

on the assumption that lines have a length independent of their configuration,

so that every line can be measured by every other

Now that the concept of an n-fold extended manifold has been constructed,
and its essential characteristic has been found in the fact that position fix-
ing in the manifold can be reduced to n numerical determinations, there
follows, as the second of the problems proposed above, an investigation of the
metric relations of which such a manifold is susceptible, and of the conditions
which suffice to determine them. These metric relations can be investigated
only in abstract terms, and their interdependence exhibited only through
formulas. Under certain assumptions, however, one can resolve them into rela-
tions which are individually capable of geometric representation, and in this
way it becomes possible to express the results of calculation geometrically.
Thus, although an abstract investigation with formulas certainly cannot be
avoided, the results can be presented in geometric garb. The foundations of
both parts of the question are contained in the celebrated treatise of Privy

Councillor Gauss on curved surfaces.

1.
Measurement requires an independence of quantity from position, which can
occur in more than one way. The hypothesis which first presents itself, and
which I shall develop here, is just this, that the length of lines is indepen-

dent of their configuration, so that every line can be measured by every other.
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If position-fixing is reduced to numerical determinations, so that the position
of a point in the given n-fold extended manifold is expressed by n wvarying
quantities X1s Xys Xg and so forth up to X then specifying a line
amounts to giving the quantities x as functions of one variable. The
problem then is, to set up a mathematical expression for the length of a line,
for which purpose the quantities x must be thought of as expressible in
units. I will treat this problem only under certain restrictions, and I first
limit myself to lines in which the ratios of the quantities dx -— the incre-
ments in the quantities x — vary continuously. One can then regard the
lines as broken up into elements within which the ratios of the quantities dx
may be considered to be constant. The problem then reduces to setting up a
general expression for the line element ds at every point, an expression
which will involve the quantities x and the quantities dx. I assume,
secondly, that the length of the line element remains unchanged, up to first
order, when all the points of this line element suffer the same infinitesimal
displacement, whereby I simply mean that if all the quantities dx increase
in the same ratio, the line element changes by the same ratio. Under these
assumptions, the line element can be an arbitrary homogeneous function of the
first degree in the quantities dx which remains the same when all the quan-
tities dx change sign, and in which the arbitrary constants are functions of
the quantities x. To find the simplest cases, I first seek an expression for
the (n-1)-fold extended manifolds which are everywhere equidistant from the
origin of the line element, i.e., I seek a continuous function of position
which distinguishes them from one another. This must either decrease or
increase in all directions from the origin; I will assume that it increases in

all directions and therefore has a minimum at the origin. Then if its first
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and second differential quotients are finite, the first order differential

must vanish and the second order differential cannot be negative; I assume

that it is always positive. This differential expression of the second order
remains constant if ds remains constant and increases quadratically when the
quantities dx, and thus also ds, all increase in the same ratio; it is
therefore equal to a constant times dsz, and consequently ds equals the
squareroot of an everywhere positive homogeneous function of the second degree
in the quantities dx, 1in which the coefficients are continuous functions of
the quantities x. In Space, if one expresses the location of a point by
rectilinear coordinates, then ds = vé(dx)z; Space 1is therefore included in
this simplest case. The next simplest case would perhaps include the manifolds
in which the line element can be expressed as the fourth root of a differential
expression of the fourth degree. Investigation of this more general class
would actually require no essentially different principles, but it would be
rather time consuming and throw proportionally little new light on the study
of Space, especially since the results cannot be expressed geometrically; I
consequently restrict myself to those manifolds where the line element can be
expressed by the square root of a differential expression of the second degree.
One can transform such an expression into another similar one by substituting
for the n independent variables, functions of n new independent variables.
However, one cannot transform any expression into any other in this way; for
the expression contains n Egl coefficients which are arbitrary functions of
the independent variables; by the introduction of new variables one can satisfy
only n conditions, and can therefore make only n of the coefficients equal

to given quantities. There remain n Bél others, already completely determined
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by the nature of the manifold to be represented, and consequently n E%i
functions of position are required to determine its metric relations. Mani-
folds, like the Plane and Space, in which the line element can be brought into
the form /é;;i thus constitute only a special case of the manifolds to be
investigated here; they clearly deserve a special name, and consequently,
these manifolds, in which the square of the lines element can be expressed as
the sum of the squares of complete differentials, I propose to call flat. In
order to survey the essential differences of the manifolds representable in
the assumed form, it is necessary to eliminate the features depending on the

mode of presentation, which is accomplished by choosing the variable quantities

according to a definite principle.

2.

For this purpose, one constructs the system of shortest lines emanating
from a given point; the position of an arbitrary point can then be determined
by the initial direction of the shortest line in which it lies, and its dis-
tance, in this line, from the initial point. It can therefore be expressed by
the ratios of the quantities dxo, i.e., the quantities dx at the origin of
this shortest line, and by the length s of this line. In place of the dx0
one now introduces linear expressions do formed from them in such a way that
the initial value of the square of the line element will be equal to the sum
of the squares of these expressions, so that the independent variables are:
the quantity s and the ratio of the quantities do. Finally, in place of
the do choose quantities LR STRERTS 3N proportional to them, but such that
the sum of their squares equals 52. If one introduces these quantities, then

2
for infinitely small values of x the square of the line element equals Idx ,
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but the next order term in its expansion equals a homogeneous expression of the
second degree in the n B%l quantities (xldxz-xzdxl), (xldx3-x3dx1),...,
and is consequently an infinitely small quantity of the fourth order, so that
one obtains a finite quantity if one divides it by the square of the infi-
nitely small triangle at whose vertices the variables have the values
(0,0,0,...), (xl,xz,x3,...), (dxl,dxz,dx3,...). This quantity remains the

same as long as the quantities x and dx are contained in the same binary
linear forms, or as long as the two shortest lines from the initial point to

x and from the initial point to dx remain in the same surface element, and
therefore depends only on the position and direction of that element. It
obviously equals zero if the manifold in question is flat, i.e., if the square
of the line element is reducible to dez, and can therefore be regarded as
the measure of deviation from flatness in this surface direction at this point.
When multiplied by - 3/4 it becomes equal to the quantity which Privy Councillor
Gauss has called the curvature of a surface. Previously, n E%l functions of
position were found necessary in order to determine the metric relations of an
n-fold extended manifold representable in the assumed form; hence if the curva-
ture is given in n 2%l surface directions at every point, then the metric
relations of the manifold may be determined, provided only that no identical
relations can be found between these values, and indeed in general this does
not occur. The metric relations of these manifolds, in which the line element
can be represented as the square root of a differential expression of the
second degree, can thus be expressed in a way completely independent of the

choice of the varying quantities. A similar path to the same goal could also

be taken in those manifolds in which the line element is expressed in a less
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simple way, e.g., by the fourth root of a differential expression of the

fourth degree. The line element in this more general case would not be reduci-
ble to the square root of a quadratic sum of differential expressions, and
therefore in the expression for the square of the line element the deviation
from flatness would be an infinitely small quantity of the second dimension,
whereas for the other manifolds it was an infinitely small quantity of the
fourth dimension. This peculiarity of the latter manifolds therefore might
well be called planeness in the smallest parts. For present purposes, however,
the most important peculiarity of these manifolds, on whose account alone they
have been examined here, is this, that the metric relations of the doubly
extended ones can be represented geometrically by surfaces and those of the
multiply extended ones can be reduced to those of the surfaces contained within

them, which still requires a brief discussion.

3.

In the conception of surfaces, the inner metric relations, which involve
only the lengths of paths within them, are always bound up with the way the
surfaces are situated with respect to points outside them. We may, however,
abstract from external relations by considering deformations which leave the
lengths of lines within the surfaces unaltered, i.e., by considering arbitrary
bendings — without stretching — of such surfaces, and by regarding all sur-
faces obtained from one another in this way as equivalent. Thus, for example,
arbitrary cylindrical or conical surfaces count as equivalent to a plane,
since they can be formed from a plane by mere bending, under which the inmer

metric relations remain the same; and all theorems about the plane — hence
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all of planimetry — retain their validity. On the other hand, they count as
essentially different from the sphere, which cannot be transformed into the
plane without stretching. According to the previous investigations, the inner
metric relations at every point of a doubly extended quantity, if its line
element can be expressed as the square root of a differential expression of
the second degree, which is the case with surfaces, is characterized by the
curvature. For surfaces, this quantity can be given a visual interpretation
as the product of the two curvatures of the surface at this point, or by the
fact that its product with an infinitely small triangle formed from shortest
lines is, in proportion to the radius, half the excess of the sum of its
angles over two right angles [that is, equal to the excess of the sum over T,
when the angles are measured in radians]. The first definition would presup-
pose the theorem that the product of the two radii of curvatures is unaltered
by mere bendings of a surface, the second, that at each point the excess over
two right angles of the sum of the angles of any infinitely small triangle is
proportional to its area. To give a tangible meaning to the curvature of an
n-fold extended manifold at a given point, and in a given surface direction
through it, we first mention that a shortest line emanating from a point is
completely determined if its initial direction is given. Consequently we
obtain a certain surface if we prolong all the initial directions from the
given point which lie in the given surface element, into shcrtest lines; and
this surface has a definite curvature at the given point, which is equal to
the curvature of the n-fold extended manifold at the given point, in the given

surface direction.
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4.

Before applying these results to Space, it is still necessary to make some
general considerations about flat manifolds, i.e., about manifolds in which the
square of the line element can be represented as the sum of squares of complete
differentials.

In a flat n-fold extended manifold the curvature in every direction, at
every point, is zero; but according to the preceding investigation, in order
to determine the metric relations it suffices to know that at each point the
curvature is zero in %n(n-l) independent surface-direction. The manifolds
whose curvature is everywhere O can be considered as a special case of those
manifolds whose curvature is everywhere constant. The common character of
those manifolds whose curvature is constant may be expressed as follows:
figures can be moved in them without stretching. For obviously figures could
not be freely shifted and rotated in them if the curvature were not the same
in all directions, at all points. On the other hand, the metric properties of
the manifold are completely determined by the curvature; they are therefore
exactly the same in all the directions around any one point as in the direc-
tions around any other, and thus the same constructions can be effected start-
ing from either; consequently, in the manifolds with constant curvature figures
may be given any arbitrary position. The metric relations of these manifolds
depend only on the value of the curvature, and it may be mentioned, as regards
the analytic presentation, that if one denotes this value by o, then the

expression for the line element can be put in the form
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5.

The consideration of surfaces with constant curvature may serve for a
geometric illustration. It is easy to see that the surfaces whose curvature
is positive can always be rolled onto a sphere whose radius is the reciprocal
of the curvature; but in order to survey the multiplicity of these surfaces,
let one of them be given the shape of a sphere, and the others the shape of
surfaces of rotation which touch it along the equator. The surfaces with
greater curvature than the sphere will then touch the sphere from inside and
take a form like the portion of the surface of a ring, which is situated away
from the axis; they could be rolled upon zones of spheres with smaller radii,
but would go round more than once. Surfaces with smaller positive curvature
are obtained from spheres of larger radii by cutting out a portion bounded by
two great semi-circles, and bringing together the cut-lines. The surface of
curvature zero will be a cylinder standing on the equator; the surfaces with
negative curvature will touch this cylinder from outside and be formed like
the part of the surface of a ring which is situated near the axis. If one
regards these surfaces as possible positions for pieces of surface moving in
them, as Space is for bodies, then pieces of surface can be moved in all these
surfaces without stretching. The surfaces with positive curvature can always
be so formed that pieces of surface can even be moved arbitrarily without bend-
ing, namely as spherical surfaces, but those with negative curvature cannot.
Aside from this independence of position for surface pieces, in surfaces with
zero curvature there is also an independence of position for directions, which

does not hold in the other surfaces.
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III. Applications to Space

1.

Following these investigations into the determination of the metric rela-
tions of an n-fold extended quantity, the conditions may be given which are
sufficient and necessary for determining the metric relations of Space, if we
assume beforehand the independence of lines from configuration and the possi-
bility of expressing the line element as the square root of a second order
differential expression, and thus flatness in the smallest parts.

First, these conditions may be expressed by saying that the curvature at
every point equals zero in three surface directions, and thus the metric rela-
tions of Space are implied if the sum of the angles of a triangle always equals
two right angles.

But secondly, if one assumes with Euclid not only the existence of lines
independently of configuration, but also of bodies, then it follows that the
curvature is everywhere constant, and the angle sum in all triangles is deter-
mined if it is known in one.

In the third place, finally, instead of assuming the length of lines to
be independent of place and direction, one might assume that their length and
direction is independent of place. According to this conception, changes or
differences in position are complex quantities expressible in three independent

units.

2.
In the course of the previous considerations, the relations of extension

or regionality were first distinguished from the metric relations, and it was
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found that different metric relations were conceivable along with the same
relations of extension; then systems of simple metric specifications were
sought by means of which the metric relations of Space are completely deter-
mined, and from which all theorems about it are a necessary consequence. It
remains now to discuss the question how, to what degree, and to what extent
these assumptions are borne out by experience. In this connection there is an
essential difference between mere relations of extension and metric relatioms,
in that among the first, where the possible cases form a discrete manifold,
the declarations of experience are to sure never completely certain, but they
are not inexact, while for the second, where the possible cases form a con-
tinuous manifold, every determination from experience always remains inexact
— be the probability ever so great that it is nearly exact. This circumstance
becomes important when these empirical determinations are extended beyond the
limits of observation into the immeasurably large and the immeasurably small;
for the latter may obviously become ever more inexact beyond the boundary of
observation, but not so the former.

When constructions in Space are extended into the immeasurably large,
unboundedness is to be distinguished from infinitude; one belongs to relations
of extension, the other to metric relations. That Space is an unbounded triply
extended manifold is an assumption which is employed for every apprehension of
the external world, by which at every moment the domain of actual perception
is supplemented, and by which the possible locations of a sought for object
are constructed; and in these applications it is continually confirmed. The
unboundedness of space consequently has a greater empirical certainty than any
experience of the external world. But its infinitude does not in any way

follow from this; quite to the contrary, Space would necessarily be finite if
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one assumed independence of bodies from position, and thus ascribed to it a
constant curvature, as long as this curvature had ever so small a positive
value. If one prolonged the initial directions lying in a surface direction
into shortest lines, one would obtain an unbounded surface with constant posi-
tive curvature, and thus a surface which in a flat triply extended manifold

would take the form of a sphere, and consequently be finite.

3.

Questions about the immeasurably large are idle questions for the explana-
tion of Nature. But the situation is quite different with questions about the
immeasurably small. Upon the exactness with which we pursue phenomenon into
the infinitely small, does our knowledge of their causal connections essen-—
tially depend. The progress of recent centuries in understanding the mechanisms
of Nature depends almost entirely on the exactness of construction which has
become possible through the invention of the analysis of the infinite and
through the simple principles discovered by Archimedes, Galileo and Newton,
which modern physics makes use of. By contrast, in the natural sciences where
the simple principles for such constructions are still lacking, to discover
causal connections one pursues phenomenon into the spatially small, just so far
as the microscope permits. Questions about the metric relations of Space in
the immeasurably small are thus not idle ones.

If one assumes that bodies exist independently of position, then the
curvature is everywhere constant, and it then follows from astronomical mea-
surements that it cannot be different from zero; or at any rate its reciprocal
must be an area in comparison with which the range of our telescopes can be

neglected. But if such an independence of bodies from position does not
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exist, then one cannot draw conclusions about metric relations in the infinitely
small from those in the large; at every point the curvature can have arbitrary
values in three directions, provided only that the total curvature of every
measurable portion of Space is not perceptibly different from zero. Still
more complicated relations can occur if the line element cannot be represented,
as was presupposed, by the square root of a differential expression of the
second degree. Now it seems that the empirical notions on which the metric
determinations of Space are based, the concept of a solid body and that of a
light ray, lose their validity in the infinitely small; it is therefore quite
definitely conceivable that the metric relations of Space in the infinitely
small do not conform to the hypotheses of geometry; and in fact one ought to
assume this as soon as it permits a simpler way of explaining phenomena.

The question of the validity of the hypotheses of geometry in the infi-
nitely small is connected with the question of the basis for the metric rela-
tions of space. In connection with this question, which may indeed still be
ranked as part of the study of Space, the above remark is applicable, that in
a discrete manifold the principle of metric relations is already contained in
the concept of the manifold, but in a continuous one it must come from some-
thing else. Therefore, either the reality underlying Space must form a dis-
crete manifold, or the basis for the metric relations must be sought outside
it, in binding forces acting upon it.

An answer to these questions can be found only by starting from that con-
ception of phenomena which has hitherto been approved by experience, for which
Newton laid the foundation, and gradually modifying it under the compulsion of
facts which cannot be explained by it. Investigations like the one just made,

which begin from general concepts, can serve only to insure that this work is
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not hindered by too restricted concepts, and that progress in comprehending the
connection of things is not obstructed by traditional prejudices.

This leads us away into the doamin of another science, the realm of
physics, into which the nature of the present occasion does not allow us to

enter.



