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Abstract

Formulae relating one and the same force in two inertial
frames of reference are derived directly from the Lorentz trans-
formation of space and time coordinates and relativistic equa-
tion for the dynamic law of motion in three dimensions. We
obtain firstly relativistic transformation for the velocity and
acceleration of a particle. Then we substitute them in the rel-
ativistic dynamic equation and perform tedious algebraic ma-
nipulations. No recourse were made to ”general rules for the
transformation of 4-tensors”. Formulae obtained were verified
in electrodynamics.
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1 Introduction

The relativistic mechanics looks in one dimension as [1]

ẍ

(1− ẋ2/c2)3/2
= F (1)

where ẋ = dx/dt, ẍ = d2x/dt2. Equation (1) is invariant under the
Lorentz transformation

x′ =
x− vt

(1− v2/c2)1/2
, (2)

y′ = y, z′ = z, (3)

t′ =
t− xv/c2

(1− v2/c2)1/2
(4)

where v is the parameter that has the meaning of the velocity

v = (v, 0, 0) (5)

which the inertial frame of reference K ′ moves in the inertial frame
of reference K. Finding from (2), (4) relativistic transformations of
the velocity ẋ and acceleration ẍ of the body and substituting them
in

ẍ′

(1− ẋ′2/c2)3/2
= F ′ (6)

we may verify that the left-hand part of (6) turns exactly into the
left-hand part of (1). Hence, we have for the right-hand parts of
equations (1) and (6)

F ′ = F. (7)

In three dimensions the situation is complicated. The left-hand
parts of scalar dynamic equations in K ′ are expressed as linear com-
binations of their left-hand parts in K. This induces respective trans-
formation of the force F. To find linear relations connecting each of
F ′x, F ′y and F ′y with Fx, Fy and Fz is the aim of the present work.
We will proceed in the following sequence.

Firstly, the one-dimensional Lorentz transformation (2)-(4) will
be generalized to three dimensions. Then we will find from it the
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relativistic transformations of the velocity ṙ = dr/dt and accelera-
tion r̈ = d2r/dt2, where r = (x, y, z). We will substitute them into
a three-dimensional generalization of the dynamic equation (1) and
after tedious manipulations find the relativistic transformation of F.
Finally, we will apply the result to the system of two electric charges
moving with a constant velocity.

2 Three dimensional Lorentz transformation

Let v be arbitrarily oriented in space. We have from (2) and (4)
for the projection of r on the direction of v

r′ · v/v = γ(r · v/v − vt), (8)
t′ = γ(t− r · v/c2) (9)

where
γ =

1
(1− v2/c2)1/2

. (10)

By (3) the direction perpendicular to v remains unchanged:

r′⊥ = r⊥. (11)

Expanding a vector into the sum of vectors perpendicular and parallel
to v we get

r = r⊥ + r‖. (12)

This gives, using (8), (11) and (12)

r′ = r′⊥ + r′‖ = r′⊥ + (r′ · v/v)v/v

= r⊥ + γ(r · v/v − vt)v/v
= r + (γ − 1)r‖ − γvt.

(13)

3 Transformation of velocity

We have from (9) and (13)

dt′ = γ(dt− dr · v/c2), (14)
dr′ = dr + (γ − 1)dr‖ − γvdt. (15)
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We find from (14) and (15)

ṙ′ =
dr′

dt′
=

ṙ + (γ − 1)ṙ‖ − γv
γ(1− ṙ · v/c2)

=
ṙ + v[(γ − 1)ṙ · v/v2 − γ]

γ(1− ṙ · v/c2)
. (16)

If v is directed along the x-axis then we may get from (16) and (5)

ẋ′ =
ẋ− v

1− ẋv/c2
, (17)

ẏ′ =
ẏ

γ(1− ẋv/c2)
, ż′ =

ż

γ(1− ẋv/c2)
. (18)

The following useful relation can be obtained from (17) and (18)

1
(1− ṙ′2/c2)1/2

=
γ(1− ẋv/c2)
(1− ṙ2/c2)1/2

(19)

where
ṙ2 = ẋ2 + ẏ2 + ż2. (20)

4 Transformation of acceleration

We have from (14) for the case of (5)

dt′ = γ(dt− dxv/c2) = dtγ(1− ẋv/c2). (21)

Differentiating (17) and using it and (21) we get

ẍ′ =
dẋ′

dt′
=
dẋ′

dt

dt

dt′
=

[
ẍ

1− ẋv/c2
+

(ẋ− v)ẍv/c2

(1− ẋv/c2)2

]
1

γ(1− ẋv/c2)
.

(22)
Using (10) in (22) gives finally

ẍ′ =
ẍ

[γ(1− ẋv/c2)]3
. (23)

Differentiating (18) and using it and (21) we get for a transverse
acceleration

ÿ′ =
dẏ′

dt′
=
dẏ′

dt

dt

dt′
= γ−1

[
ÿ

1− ẋv/c2
+

ẏẍv/c2

(1− ẋv/c2)2

]
1

γ(1− ẋv/c2)
.

(24)
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Relation (24) gives

ÿ′ =
1

γ2(1− ẋv/c2)2
(ÿ + ẍ

ẏv/c2

1− ẋv/c2
). (25)

The analogous expression for z is

z̈′ =
1

γ2(1− ẋv/c2)2
(z̈ + ẍ

żv/c2

1− ẋv/c2
). (26)

5 Transformation of F‖

The three-dimensional relativistic mechanics is [1]

d

dt

[
mṙ

(1− ṙ2/c2)1/2

]
= F. (27)

Completing the differentiation in (27) and taking scalar components:

mẍ

(1− ṙ2/c2)1/2
+

mẋ(ṙ · r̈)/c2

(1− ṙ2/c2)3/2
= Fx, (28)

mÿ

(1− ṙ2/c2)1/2
+

mẏ(ṙ · r̈)/c2

(1− ṙ2/c2)3/2
= Fy, (29)

mz̈

(1− ṙ2/c2)1/2
+

mż(ṙ · r̈)/c2

(1− ṙ2/c2)3/2
= Fz. (30)

Strictly speaking, equation (27) is not Lorentz invariant. However,
we may retain the form of (28) in K ′ system:

mẍ′

(1− ṙ′2/c2)1/2
+
mẋ′(ṙ′ · r̈′)/c2

(1− ṙ′2/c2)3/2
= F ′x. (31)

Substituting (17), (18), (23), (25) and (26) in (31), the left-hand part
of (31) can be represented as a linear combination of left-hand parts of
equations (28), (29) and (30). This means that retaining the form of
(27) we must transform the right-hand part of (27). The component
F ′x of the force is represented as respective linear combination of Fx,
Fy and Fz. Next, we will perform explicitly the procedure mentioned.
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Using (19) and (23) in (31) gives

F ′x =
mẍ

γ2(1− ẋv/c2)2(1− ṙ2/c2)1/2
+

+
mẋ′(ẋ′ẍ′ + ẏ′ÿ′ + ż′z̈′)γ3(1− ẋv/c2)3

c2(1− ṙ2/c2)3/2
.

(32)

Then, substituting (23), (25), (26) and (17)-(18) in the second term
of (32):

F ′x =
mẍ

γ2(1− ẋv/c2)2(1− ṙ2/c2)1/2
+

m(ẋ− v)
c2(1− ṙ2/c2)3/2

[
(ẋ− v)ẍ

(1− ẋv/c2)2
+

+
ẏ

1− ẋv/c2
(ÿ + ẍ

ẏv/c2

1− ẋv/c2
) +

ż

1− ẋv/c2
(z̈ + ẍ

żv/c2

1− ẋv/c2
)
]

=
mẍ

γ2(1− ẋv/c2)2(1− ṙ2/c2)1/2
+

m(ẋ− v)
c2(1− ṙ2/c2)3/2(1− ẋv/c2)

×

×
[
ẍ

ẋ− v
1− ẋv/c2

+ ẏÿ + ẍ
ẏ2v/c2

1− ẋv/c2
+ żz̈ + ẍ

ż2v/c2

1− ẋv/c2

]
. (33)

Firstly, we consider the portion of (33) that contains ẍ. Using in it
(10) and (20) gives

mẍ

(1− ṙ2/c2)1/2(1− ẋv/c2)2
[
1− v2/c2+

+
(ẋ− v)2 + (ẏ2 + ż2)(ẋ− v)v/c2

c2(1− ṙ2/c2)

]
.

(34)

The expression in quadratic brackets of (34) is

1− v2/c2 +
(ẋ− v)2 − (1− ṙ2/c2)(ẋ− v)v + (ẋ− v)v − ẋ2(ẋ− v)v/c2

c2(1− ṙ2/c2)

= 1− ẋv/c2 +
ẋ2 − ẋv − ẋ2(ẋ− v)v/c2

c2(1− ṙ2/c2)

= 1− ẋv/c2 +
ẋ(ẋ− v)(1− ẋv/c2)

c2(1− ṙ2/c2)
.

(35)
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Substituting (35) in (34):

mẍ

(1− ṙ2/c2)1/2(1− ẋv/c2)

[
1 +

ẋ(ẋ− v)
c2(1− ṙ2/c2)

]
=

mẍ

(1− ṙ2/c2)1/2
+

mẍ

(1− ṙ2/c2)1/2(1− ẋv/c2)

[
ẋv

c2
+

ẋ(ẋ− v)
c2(1− ṙ2/c2)

]
=

mẍ

(1− ṙ2/c2)1/2
+

mẍẋ(ẋ− ṙ2v/c2)
c2(1− ṙ2/c2)3/2(1− ẋv/c2)

. (36)

We have for members from (33) containing ÿ and z̈

m(ẋ− v)
c2(1− ṙ2/c2)3/2(1− ẋv/c2)

(ẏÿ + żz̈). (37)

Summing (36) and (37) and using ẋẍ+ ẏÿ + żz̈ = ṙ · r̈ gives

F ′x =
mẍ

(1− ṙ2/c2)1/2
+
m[ẍẋ(ẋ− ṙ2v/c2) + (ẋ− v)(ẏÿ + żz̈)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)

=
mẍ

(1− ṙ2/c2)1/2
+
m[ẋ(ṙ · r̈)− v(ẋẍṙ2/c2 + ẏÿ + żz̈)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)

=
mẍ

(1− ṙ2/c2)1/2
+
m[ẋ(ṙ · r̈)− v(ṙ · r̈) + vẋẍ(1− ṙ2/c2)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)
.

(38)

Using (28) in (38):

F ′x = Fx +
m[ẋ(ṙ · r̈)ẋv/c2 − v(ṙ · r̈) + vẋẍ(1− ṙ2/c2)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)

= Fx +
mv[−(ṙ · r̈)(1− ẋ2/c2) + ẋẍ(1− ṙ2/c2)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)
. (39)

Using (20) in (39):

F ′x = Fx −
mv[(ṙ · r̈)(ẏ2 + ż2)/c2 + (ẏÿ + żz̈)(1− ṙ2/c2)]

c2(1− ṙ2/c2)3/2(1− ẋv/c2)

= Fx −
v/c2

(1− ẋv/c2)

{[
mÿ

(1− ṙ2/c2)1/2
+

mẏ(ṙ · r̈)/c2

(1− ṙ2/c2)3/2

]
ẏ+

+
[

mz̈

(1− ṙ2/c2)1/2
+

mż(ṙ · r̈)/c2

(1− ṙ2/c2)3/2

]
ż

}
.

(40)
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Using (29) and (30) in (40) we get finally

F ′x = Fx − (Fy ẏ + Fz ż)
v/c2

(1− ẋv/c2)
. (41)

6 Transformation of F⊥

Using (18), (19), (25) and (17), (23), (26) in

mÿ′

(1− ṙ′2/c2)1/2
+
mẏ′(ṙ′ · r̈′)/c2

(1− ṙ′2/c2)3/2
= F ′y (42)

we obtain

F ′y =
m

γ(1− ẋv/c2)
{ ÿ

(1− ṙ2
/c2)1/2

+
ẏẍv/c2

(1− ṙ2
/c2)1/2(1− ẋv/c2)

+
ẏ

c2(1− ṙ2/c2)3/2

[
(ẋ− v)ẍ
1− ẋv/c2

+ ẏÿ +
ẍẏ2v/c2

1− ẋv/c2
+ żz̈ +

ẍż2v/c2

1− ẋv/c2

]
}

=
m

γ(1− ẋv/c2)
{ ÿ

(1− ṙ2/c2)1/2

ẏ

c2(1− ṙ2/c2)3/2
×

×
[

(1− ṙ2/c2)ẍv + (ẋ− v)ẍ+ (ẏ2 + ż2)ẍv/c2

1− ẋv/c2
+ ẏÿ + +żz̈

]
}

=
m

γ(1− ẋv/c2)

{
ÿ

(1− ṙ2/c2)1/2
+

ẏ

c2(1− ṙ2/c2)3/2
×

×
[

(−ẋ2/c2)ẍv + ẋẍ

1− ẋv/c2
+ ẏÿ + +żz̈

]}
=

m

γ(1− ẋv/c2)

{
ÿ

(1− ṙ2/c2)1/2
+

ẏ(ṙ · r̈)/c2

(1− ṙ2/c2)3/2

}
. (43)

Comparing (43) with (29) and using in it (10) we get finally

F ′y = Fy
(1− v2/c2)1/2

1− ẋv/c2
. (44)

Similarly for z component:

F ′z = Fz
(1− v2/c2)1/2

1− ẋv/c2
. (45)

678 Concepts of Physics, Vol. VI, No. 4 (2009)



Relativistic force transformation

7 Relativistic electrodynamics

Let two particles at (0, 0, 0) and (x, y, z) be at rest in the reference
system K. They interact with a force F̆ that can be calculated from
some field equations. Next, let these particles move with a constant
velocity

ṙ = (ẋ, 0, 0). (46)

We may calculate the force F acted between moving particles from
the same field equations. A force can be expanded into the sum of
longitudinal and transverse components:

F = F‖ + F⊥. (47)

Let us pass to the reference system K ′ given by (5) with

v = ẋ. (48)

Then, according to (41) with (46):

F′‖ = F‖, (49)

according to (45) with (48) and (10):

F′⊥ = γF⊥. (50)

By (47), (49) and (50):

F′ = F′‖ + F′⊥ = F‖ + γF⊥. (51)

The principle of relativity states that we must have

F′ = F̆ (52)

when x′ = x, y′ = y and z′ = z. Further we will verify (52) for the
case of two electric charges.

We have for two charges q1 and q2 at rest

F̆ = q1q2
xix + yiy + ziz

(x2 + y2 + z2)3/2
. (53)
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When a charge q1 moves with a constant velocity ẋ we must solve
equations

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
− 1
c2
∂2ϕ

∂t2
= −4πq1δ(x− ẋt, y, z), (54)

∂2Ax

∂x2
+
∂2Ax

∂y2
+
∂2Ax

∂z2
− 1
c2
∂2Ax

∂t2
= −4πẋ

c
q1δ(x− ẋt, y, z).(55)

Using the Lorentz transform (2)-(4) with (48) we may pass in (54)
and (55) to reference system K ′. The left-hand parts of equations
(54) and (55) are known to be Lorentz-invariant. In K ′ the charge is
at rest, hence fields ϕ and A do not depend on t′. Using the property
of δ-function δ(|a|x) = δ(x)/|a| we obtain from (54) and (55)

∂2ϕ

∂x′2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= −4πq1γδ(x′, y, z), (56)

∂2Ax

∂x′2
+
∂2Ax

∂y2
+
∂2Ax

∂z2
= −4πq1γ

ẋ

c
δ(x′, y, z). (57)

Solving equations (56) and (57) we get with (48), (2) and (10)

ϕ = γ
q1
R
, (58)

Ax = γ
v

c

q1
R
, Ay = 0, Az = 0, (59)

R = [γ(x− vt)2 + y2 + z2]1/2. (60)

Calculating from (58)-(60) the Lorentz force that acts on a charge q2
which moves in K with the same velocity v we may obtain[2]

F = q2[−∇ϕ− 1
c

∂A
∂t

+
1
c

(v× curlA)]

= q1q2
γ(x− vt)ix + γ−1(yiy + ziz)

[γ2(x− vt)2 + y2 + z2]3/2
. (61)

We may isolate in (61) longitudinal F‖ = Fxix and transverse F⊥ =
Fyiy +Fziz components according to (47), then substitute them into
(51) and use (2) with (10) in the result. This gives

F′ = q1q2
x′ix + yiy + ziz

(x′2 + y2 + z2)3/2
. (62)

Comparing (62) and (53) for x = x′ we confirm[2] formula (52).
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