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DEPTHS OF THE REES ALGEBRAS AND
THE ASSOCIATED GRADED RINGS

MEE - KYOUNG KIM

1. Introduction

Throughout this paper, all rings are assumed to be commutative with iden-
tity. By alocal ring(R, m), we mean a Noetherian rifgwhich has a unique
maximal ideaim. By dim(R) we always mean the Krull dimension Bf Let
| be anideal in arindgrk andt an indeterminate oveéR. Then the Rees algebra
R[I1t] and the associated graded rigg (R) of | are defined to be

RIt]=R®It® 1%t ---

and

gn(R=R/I@®1/1?a1?/13a--.

These rings are important not only algebraically, but geometrically as well.
For example, ProR[It]) is the blow-up of Sped?) with respect td .

The purpose of this paper is to investigate the relationship between the
depths of the Rees algebRjIt] and the associated graded rigg (R) of
an ideall in a local ring(R, m) of dim(R) > 0. The relationship between
the Cohen-Macaulayness of these two rings has been studied extensively. Let
(R, m) be alocal ring and an ideal ofR. AnidealJ contained inl is called
a reduction ofl if JI" = 1" for some integen > 0. A reductionJ of
| is called a minimal reduction df if J is minimal with respect to being a
reduction ofl . The reduction number df with respect tal is defined by

ry(1) =min{n > 0] JI" = "1},
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The reduction number df is defined by

r(l) =min{ry(I)|J isaminimal reduction of }.

S. Goto and Y. Shimoda characterized the Cohen-Macaulay property of the
Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of
the Cohen-Macaulay property of the associated graded ring of that maximal
ideal and the reduction number of that maximal ideal. Let us state their
theorem.

THEOREM1.1. ([4], Theorem 3.1) LetR, m) be a Cohen-Macaulay local
ring of dimensiord > 0 and assume th&/m is infinite. Then the following
conditions are equivalent.

(1) R[mt] is a Cohen-Macaulay ring.
(2) arm(R) is a Cohen-Macaulay ring amgm) < d — 1.

In a number of cases, this theorem gives a test for determining whether or
not Rimt] is Cohen-Macaulay, becausém) is reasonable to compute. For
example, leR = K[ X2, X3]]andm = (X2, X®)R, wherek is a field andX
is variable ovek. ThenR is one-dimensional local domain an¢m) = 1.
Hence R[mt] is not Cohen-Macaulay by Theorem 1.1. More generally, if
(R, m) is any one-dimensional local domain which is not a rank one discrete
valuation domain, theR[mt] is not Cohen-Macaulay by Theorem 1.1.

Let (R, m) be a local ring and an ideal ofR. The analytic spread df,
denoted by(1), is defined to be dimiR[1t]/m R 1t]). In[13], itis shown that
ht(l1) <I(l) < dim(R). Anideall is called equimultipléf 1 (1) = ht(l). If
R/m is an infinite field, them(l) is the least number of elements generating
a reduction ofl ([13]). In particular, allm-primary ideals are equimultiple.
U. Grothe, M. Herrmann and U. Orbanz generalized Theorem 1.1 to the case
of all “equimultiple ideals". We now state the result of Grothe - Herrmann -
Orbanz.

THEOREML1.2. ([5], Theorem4.8) LetR, m) be a Cohen-Macaulay local
ring having an infinite residue field andan equimultiple ideal of heigHd.
Assume thas > 0. Then the following conditions are equivalent.

(1) R[It] is a Cohen-Macaulay ring.
(2) ar(R) is a Cohen-Macaulay ring amd@l ) < s — 1.
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In general, it is knowndf. [9], Proposition 1.1) that iR and R[It] are
Cohen-Macaulay, then deggfR[It]) = depthgr, (R))+1. Onthe other hand,
if gri(R) is Cohen-Macaulay, then depf[I1t]) < 1+ depthgr, (R)) (see
Lemma 3.1). We shall prove that the following equality

depti(R[It]) = depthgr, (R)) + 1

always holds for ideal under negation of the Cohen-Macaulay assumption
on gr; (R) and the condition thaR is normally Cohen-Macaulay along

We also characterize that the property of Cohen-MacaulayneR§l of and

gr| (R) are equivalent for an equimultiple ideblby imposing the condition

of a regular local ring orR. As a general reference, we refer the reader to
[11] for any unexplained notation and terminology.

2. Preliminaries

Let R be a Noetherian ring anidan ideal ofR. Given an elemerd € R,
we define )
n ifaelmI™!

Ul(a):{

When v (a) = n # oo, the residue class af in I"/I"1 is called the
leading form ofa and denoted bg*. If v, (@) = oo, then we se&* = 0.

LEMMA 2.1. Let R be a Noetherian ring andan ideal inR. Letn be a
non-negative integer afide R. Assume thabRN1' =bl'~" fori > n. Let
Ry = R/bRandl; = IR;. Then

R[It]

Rillat] = (b, bt, - - - , bt")

as gradedR-algebras.

Proof. : Note thatboRN |1 = bRfor j < n. Let¢ : R[It] — Ry[lI1t]
denote the canonical epimorphism. Rut= Kerg. ThenK is a homogeneous
ideal inRR[1t].

Claim: K = (b, bt, -- -, bt™.
D : Itis obvious.
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C : Let z be a homogeneous elementtofwith degz = | > 0. Writez = ot
with « € I'. Then we haver € bRN I'. We have two cases : (1) when
| >n,and (2) when <n.

Case (1) 1 > n. By assumption we write = bcwith c € I'™", and hence

z=oat' =bct =bt" - ct'™" e (bt R[I1].
Case (2) 1 < n. From the note, we write = br withr € R, and hence

z=at' =rbt' € GHR[It].

LEMMA 2.2. Let R be a Noetherian ringl an ideal inR anda € R.
Assume thaa is a non-zero-divisior olR andaRN 1" = al™! forn > 1.
Then

(1) (aR[It]:at) = IR[It].

(2) There exists an exact sequence
R[ 1t R I
0— gn(R L1t] — )| —=t]| — 0
aR[It] aR/ | aR
of gradedR[1t]-modules.

Proof. : (1) 2: Let f € IR[It]. Write f = fo+ fit +---+ fstS,
wheref; e I't1 i =0,1,---,s. Then we have

f.at=a(fot + f1t2+ ... + ft5) e aR[It].

C: Let f € (aR[It] : at) with f = fo+ fit + .- + fit' € R[It]. Then
f .at = ag, whereg = go + g1t + - - - + gi41t'** € R[It]. Hence we have

By the nature o, fi = gi;1 € i+ fori =0, 1, ---, I, which concludes the
proof of (1).
(2) Consider the exact sequence
(a, at)R[It] R[It] R[It]
@R[It] aR[It] (a,at)R[ 1]
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of gradedR[It]-modules. Moreover

(@, ahR[It] _ (at)R[1t] B (at)R[It]
aR[It] — aR[It]n@HR[It] @R[It]: at)(at)
_ ORIl RN
=G@rit-ay _irog Y@
=g (R),

and

R I N R[1t]
(a_R) [a_Rt] ~ m by Lemma2.1 |}

Notation : Let G = ®,-0G, be a non-negatively graded Noetherian ring
such thatsg is a local ring andA a finitely generated gradé€g-module. Then
we define deptpA) to be depth, (An), whereN is the unigue homogeneous
maximal ideal ofG. We letG* denote the ideab,~1Gn.

LEMmMA 2.3. (cf. [3], Lemma 1.1) LelG be a non-negatively graded
Noetherian ring such thdgq is a local ring andA, B and C be finitely
generated graded-modules. Suppose there is an exact sequence

0 A B C 0

where the maps are all homogeneous. Then either
(1) deptA > deptB = deptiC, or

(2) deptiB > depthA = deptiC + 1, or

(3) deptiC > depthA = deptiB.

Proof. : The proof follows from the Ext characterization of depth, and the
long exact sequence for EXj.

DEFINITION 2.4. Let(R, m) be alocal ring and an ideal ofR. We sayR
is normally Cohen-Macaulay alorigif

depth(1"/1™*) = dim(R/1) foralln > 0.
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REMARKS. : (1) Let(R, m) be alocal ring. ThermR is normally Cohen-
Macaulay along anyn-primary ideall .
(2) Let (R, m) be a quasi-unmixed local ring andan ideal inR with
ht(l) > 0. Assume thaR is normally Cohen-Macaulay along Thenl is
an equimultiple ideal.
(3) Let(R, m) be a local ring and an ideal ofR, and suppose thaR is
normally Cohen-Macaulay along Suppose that*, the image ob in R/I,
is agr| (R)-regular element. TheR/bRis normally Cohen-Macaulay along
| (R/bR).

Proof. : (1) Itistrivial.
(2) Recall that diiR) = dim(R/I) + ht(l) sinceR is a quasi-unmixed
local ring. R/1" is Cohen-Macaulay for ati > 1 ([6], Lemma 3.8). Then we
have by a result of L. Burch ([1], Corollary in pp. 373)

[(1) <dm(R) — mnin{deptr(R/I ™M}
= dim(R) — depth R/ ™), for some integeng
= dim(R) — dim(R/1™)
= ht(1™)
= ht(l).

(3) PutR; = R/bRandl; = I R;. We have the following isomorphisms

I"+bR _ " /1

~

Il R~ IMI 4 pIn — b(In/ 0Ly’

(I)"/ (1) =

Sinceb* is agr, (R)-regular elementy is a non-zero-divisor oh"/1"+* for
alln > 0. Hence, we have

depth(1/171) = depth(1"/1"1) — 1
=dim(R/1) — 1
=dim(Ry/10). NI
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3. Depths of the Rees algebras and the associated graded rings

LEMMA 3.1. Let (R, m) be ad-dimensional Cohen-Macaulay local ring
andl an ideal oht(l) > 0. Then

depth(R[1t]) < depthgr, (R)) + 1.

Proof. : Consider the exact sequences

0 — ItR[It] — R[It] — R—> 0 (1)

0 — IR[It] — R[It] — gr;(R) — 0 2)
of R[It]-modules. From (2) we have that by Lemma 2.3, either
depti(R[It]) > depth(I R[It]) = depthgr,(R)) + 1,
or
depthgr, (R)) > depth(R[It]).
In the second case we are done. Hence we assume that
depthI R[It]) = depthgr, (R)) + 1. (3)
From (1) it follows that by Lemma 2.3, either
depti(ItR[I1t]) > depth(R[It]),

or
depti(R[It]) > deptR(ItR[It]) = depthR) + 1.

But sincel R[1t] = ItR[It] as R[It]-modules, we have
deptR(I R[It]) = depth(1tR[It]). 4)
First, if depti{It R[It]) > depth(R[It]), then

depthgr, (R)) + 1 = deptRI R[It]) by (3)
= deptiItR[It]) by (4)
> depthR[It]).
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Second, if deptfitR[It]) = depth R) + 1, then

depth(gr,; (R)) + 1 = deptRI R[It]) by (3)
= depth(ItR[It]) by (4)
= depthR) + 1
=dm(R) +1 (R : CML)
= dim(R[It])
> depth(R[It]).

Thus, in all cases we have

depth(R[It]) < depthigri(R) +1. N

LEMMA 3.2. LetV be a finite-dimensional vector space over the infinite
field K, and letHq, - - - , H, be proper subspaces ¥f. Then there exists
v eV suchthab ¢ HyU---U Hy.

Proof. : We proceed by inductionam If n = 1, thenitis clear. Ih > 1,
then we can choose an element V such thatw ¢ H; U --- U H,_; by
inductive hypothesis. By the natureldf, there exists an elemefte V\H,.
Suppose thaH; U --- U H, = V. SinceK is infinite, there are distinct
elementgq, - -+, rpy1 in K such thate +r18, --- , o +rp1p are inV. By
the pigeonhole principle, two of them must be in the same subspace, say
a +rif,a + ;B are in He for somek, wherei # j. If k = n, then
(@ +r1ip) —(@+r1;B) = (ri —ry))B € Hy. Hencep € Hy, which is a
contradiction to the choice &. If k < n, then(r; —rj)B € Hi, and hence
B € Hy. Sincexa +ri 8 € Hy, it follows thate € Hy, which is a contradiction
to the choice otr. [ |

LEMMA 3.3. Let (R, m) be a local ring and an ideal inR of ht(l) > O.
Suppose that

deptiI" /1™ > 0 forall n=> 0.
Then we can find an elemexte m which is a non-zero-divisor oR/1" for

alln > 0.
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Proof. : Sincel J, Assg/ (1"/1™1) € Assg(gri (R)) and Asg, (91 (R))
is a finite set ¢f, [12], Proposition 1.3), and hengg,, Assg, (1"/1"1) is a
finite set. We can choose an elem&n&é m which is a non-zero-divisor on
I"/1"* for alln > 0.

Claim : x is a non-zero-divisor oRR/1"** for alln > 0.

This will be done by induction on. The assertion is clear for = 0. So
we assum@ > 1. Sincex is a non-zero-divisor om"/1"*! and onR/I", x
is a non-zero-divisor oiR/1"** by considering a short exact sequence. |j

THEOREM 3.4. Let (R, m) be a positive integed-dimensional Cohen-
Macaulay local ring having an infinite residue fidddand | an ideal with
ht(l) > 0. Assume thagr, (R) is not Cohen-Macaulay arnd is normally
Cohen-Macaulay along. Then

deptR[1t]) = deptkgr, (R)) + 1.

Proof. : The inequality< holds by Lemma 3.1. We now prove the other
inequality. We proceed by induction on= dim(R/1). We have two cases :
(1) whenr =0,and (2) whem > 0.

Case (1) r = 0. Inthis casd is anm-primary ideal ofR. We now proceed
by induction ond = dim(R). Since the inequality is trivial if eithedt = 1 or
depthgr, (R)) = 0, we may assume thdt> 2 and deptlgr, (R)) > 1. Since
| is anm-primary ideal ofR, any homogeneous element of degree 0 that is not
aunitis nilpotent irgr, (R). Hence there exists a regular elemengin(R)*.
Thatis,gr, (R)* Z U{ Q|Q € Ass(gr|(R)) }. For eachQ € Asg(gr, (R)),
((QN1/1% +ml/12)/(ml/1?) is a properk-vector subspace df/m1 by
Nakayama’'s Lemma. Sindeis infinite, we can choosa € |\m| such that
the image ofa in | /12, a*, is not in any associated prin@ of gr, (R) by
Lemma 3.2. That isa* is agr, (R)-regular element. Henceis a non-zero-
divisoronRandaRN 1" = al"!foralln > 1 (cf: [14], Corollary 2.7). We
have an exact sequence

0— grn (R aRI-'\[>[I|tt]] (a;RR> |:I—t] — 0

of R[It]-modules by Lemma 2.2. Applying Lemma 2.3, we see that either

ROt R\ I
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R[1t] B R |
depth(w> > depthgr, (R)) = depth(<ﬁ> [ﬁtD + 1,

R I R[It
depth((ﬁ> [ﬁtD > depthgr, (R)) = depth(([T)]> .

But asa* is agr| (R)-regular elemengr, (R)/(a*) = gr|,(Ry), whereR; =
R/aRandl; = | R;. First, if depth(R[I1t]/(a)) = depth(Ry[I1t]), then

or

or

R[It])
depth(R[1t]) = depth( — ) + 1
epti(R[It]) = dep ((a) +

= depth(Ry[I1t]) + 1
> depth(gr,(Ry)) +1+1
ar (R))
= depth +2
o ( (@)
= depthgr | (R) —1+2
= depthgr, (R)) + 1.

Second, if depttR[1t]/(a)) > depthgr, (R)), then

depth(R[It]) = depth(R[It]/(a)) + 1
> depthigr (R)) + 1.

Third, if depthigr| (R)) = deptI'(R[It]/(a)), then the assertion is clear. Thus,
this completes the proof of case (1).

Case (2) :r > 0. Assume that the inequality holds for— 1. SinceR is
normally Cohen-Macaulay alorig we can choose an elemén& mwhich is
aregular element oR/1"* for alln > 0 by Lemma 3.3, and henbds a non-
zero-divisororRandbRN 1" = bI"foralln > 1 (cf: [6], Lemma 1.35). Ap-
plying Lemma 2.1, we get the following isomorphidRjlt]/(b) = Ry[l2t],
whereR, = R/bRandl, = IR,. Hence dim(R,/12) = dim(R/(1, b)) =
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dim(R/1) — 1, andgr,,(Ry) = gr, (R)/(b*) is not Cohen-Macaulay, &8 is
agr, (R)-regular element an&, is normally Cohen-Macaulay alorg. By
the inductive hypothesis, we have

depth(Ry[I2t]) > depthgri,(Rz)) + 1.
deptiR[It]) — 1 > depthgr (R) -1+ 1.

This completes the proof of case (2).

COROLLARY 3.4.1. ([8], Theorem2.1 ) LetR, m) be a Cohen-Maca ulay
local ring of dimension > 1 andl anm-primary ideal. Assume thar, (R)
is not Cohen-Macaulay. Then

depthR[It]) = deptHgr, (R)) + 1.

Proof. : Recall thatR is normally Cohen-Macaulay along anyprimary
ideal. [ |

We next show that the property of Cohen-Macaulayned$3 bf] andgr, (R)

are equivalent for equimultiple ideals by imposing the conditions BfLaR
(Regular Local Ring) orR. In other words, using a consequence of the
Briangon - Skoda Theorem we can drop the conditioh) < s—1in Theorem
1.2. Recall that an elemeate R is integral over an idedl if it satisfies an
equation of the form

a"+r@a" t+.. 41, =0, riel.

The set of all elements which are integral over an idéatm an ideal, denoted
by | and called the integral closure bf

REMARKS. : (1) Let R be a Noetherian ring. Then an idehlC | is a
reduction ofl if and only if | < J.
(2) The Brianon-Skoda Theorem (see [2], [10], or [7]) states thaRf m) is
a regular local ring andl is an ideal generated byelements, them" C 1.
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LEMMA 3.5. Let (R, m) be a regular local ring with an infinite residue
field andl an equimultiple ideal witht(1) = s > 0. Assume thagr, (R) is
a Cohen-Macaulay ring. Then there exist elements- - , as in | such that

IS:(al"" 7aS)ISil'

Proof. : Let (a,---,as) be a minimal reduction of. Letb,---, b
be a system of parameters moavherer = dim(R/1) = dim(R) — ht(l).
Then{bj,---,b}, aj,---,al}is a homogeneous system of parameters for

ari(R), where deg* =0 fori =1,---,r, and degj* =1forj=1,---,s
(cf: [5],Corollary 2.7). Hence itis gr, (R)-regular sequence singe, (R) is
Cohen-Macaulay. We hav@y, ---,a5) () I1" = (@, -+ ,a9)I" 1, vn > 1
(cf: [14],Corollary 2.7).(aq, - - - , as)® is a reduction of ® since(ay, - - - , as)
is a reduction of . Then

(a19'..’a's)sgIsg(a19'..’a's)sg(a]_"..’a's)'

Hence we have

@, ,a)1 = (a,--,a)(|1I°=1° 1

THEOREM3.6. Let(R, m) be aregularlocal ring an infinite residue field and
| an equimultiple ideal wittht(1) = s > 0. Then the following conditions
are equivalent.

(1) R[It] is a Cohen-Macaulay ring.
(2) ar(R) is a Cohen-Macaulay ring.

Proof. : (1) = (2) : This follows from Proposition 1.1 in [9].
(2) = (1) : By Lemma 3.5, there exist elemermats - - - , as in | such that
IS = (ay, ---, &) 5. Thisimpliesr (1) < s— 1, which proves the assertion
from Theorem 1.2. [ |

COROLLARY 3.6.1. (Huneke, [8], Proposition2.6) L€éR, m) be aregular
local ringdim(R) = d > 0 with an infinite residue field and anm-primary
ideal of R. ThenR[It] is Cohen-Macaulay if and only gr,(R) is Cohen-
Macaulay.
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COROLLARY 3.6.2. Let (R, m) be a regular local ring and an ideal ofR

with ht(l) > 0. Assume thaR is normally Cohen-Macaulay along Then

deptiR[1t]) = deptkgr, (R)) + 1.

Proof. : Case (1) : Ifgr,(R) is not Cohen-Macaulay, then we have the

equality by Theorem 3.4.

Case (2) : Ifgr, (R) is Cohen-Macaulay, then we see that equimultiple
sinceR is normally Cohen-Macaulay alorig Hence we have the equality by
Theorem 3.6. |

COROLLARY 3.6.3. Let (R, m) be a regular local ring of dimensiah> 0

andl anm-primary ideal. Then

N -

11.

12

deptiR[1t]) = depthgr, (R)) + 1.
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